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Abstract
We present an investigation on the structural and dynamical properties of
a ‘human protein signalling network’ (HPSN). This biological network is
composed of nodes that correspond to proteins and directed edges that represent
signal flows. In order to gain insight into the organization of cell information
processing this network is analysed taking into account explicitly the edge
directions. We explore the topological properties of the HPSN at the global and
the local scale, further applying the generating function formalism to provide
a suitable comparative model. The relationship between the node degrees and
the distribution of signals through the network is characterized using degree
correlation profiles. Finally, we analyse the dynamical properties of small
sub-graphs showing high correlation between their occurrence and dynamic
stability.

PACS numbers: 89.75.Hc, 87.10.+c, 87.14.Ee, 89.70.+c

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Living cells are continuously subjected to many stimuli from their environment, which require
appropriate responses. As for maintaining stable their internal condition or performing cellular
functions, cells are supplied with dedicated biochemical machinery of which proteins are the
key molecular entities. While this machinery is extensively characterized at the molecular
detail, a big effort is made by the system biology community to improve knowledge about
its large scale organization. For this purpose biochemical machinery can be successfully
represented as networks, where the nodes are proteins and the edges indicate an interaction
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Figure 1. (a) Example of a catalytic cycle of a substrate (protein) phosphorylation by a kinase
(protein) [6]. The adenosine triphosphate (ATP) and the substrate bind to the active site of the
kinase. One phosphate group is transferred to a particular site of the substrate, which subsequently
is released. Upon release of the remaining adenosine diphosphate (ADP), the kinase returns to the
initial state. (b) Abstraction of this process in the PSN.

between adjacent proteins. Investigating the structural and dynamical properties of such
networks will provide insight in the organization of biological processes.

Protein interaction networks (PINs) are undirected networks in which edges between
nodes indicate physical binding of proteins and have been subjected extensively to network
analysis [1–4]. Since no flow of material or information occurs, analysing PINs gives no
information on causality or cascades of chemical events. A more interesting network is
obtained by looking at the activity of proteins as information signal processing. For example,
information signals at the surface of cells (e.g. hormones or nutrients) trigger cascades of
chemical reactions, which directly results in altered activities of proteins, and eventually leads
to changes in biochemical processes, such as activation of gene expression, alternation of
metabolism, etc. We define these networks as protein signalling networks (PSNs) according
to [4]. In PSNs, the nodes correspond to levels of chemically modified states of proteins and
directed edges to signal flows established through chemical modifications. In such a network,
source proteins pass their signals to the target proteins by chemically modifying them. It is
important to explicitly point out that, in contrast to PINs, PSNs are directed and correspond
to actual dynamical regulatory systems in which information is flowing over the network.
Analysis of the directed structure of PSNs will provide better understanding of the nature of
information processing by cells.

Here, we present results on structural and dynamic analysis of a human PSN (HPSN)
proposed by Linding et al [5] and publicly available from http://networkin.info. This network
is based on a post-translational protein modification known as ‘phosphorylation’, in which a
phosphate group is transferred to a protein (substrate) by means of specialized proteins called
kinases (figure 1(a)). This catalytic process can be rendered as a directed edge between a kinase
(source) and a substrate (target), to indicate a clear direction in the signal flows (figure 1(b)).
A phosphorylated protein changes its activation state and passes signals to other proteins or
regulates, for example, gene expression or metabolic processes. Being proteins, kinases can
be phosphorylated as well, giving origin to chains of phosphorylation events.

In the following, we start by characterizing the network in terms of its global features. In
section 3, we identify topological components and apply the generating function formalism to
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emphasize the difference between the HPSN and similar networks. In section 4, we investigate
the node–degree correlations to gain some insight into the way signals are propagated through
the network. In an effort to relate structure to dynamics, in section 5 we study the stability
properties of sub-graphs in the network. In section 6, we summarize our findings and draw
some conclusions.

2. Basic features and topological characterization of the HPSN

The HPSN has 5189 edges (e) and 1810 nodes (n), hence it is quite sparse with a relative
edge density of e/[n(n − 1)] = 0.001 59. It contains 69 source nodes, 20 of which do not
receive any input and has 1790 targets, 1741 of which do not have any outputs. Only 49 nodes
are both sources and targets. The maximum number of targets of a single node is 533 and
the maximum number of inputs into a single node is 19. In the HPSN there are 11 cycles of
two edges (mutually regulating nodes) and the in-degree (kin) and out-degree (kout) have an
average value of 2.87.

The in-degree distribution is well fit by an exponential law: P(kin) ∝ exp(−αkin) with
α = 0.396 (R2 = 0.9728). A similar trend has been observed for the in-degree distribution of
transcriptional regulatory networks [7] and gene networks [8]. Such a law may be the result
of a growing mechanism without preferential attachment [9] or due to a growing mechanism
with preferential attachment, but with the constraint that each node has a limited capacity
to receive inputs [10]. The latter mechanism seems plausible for information processing
networks: too many information signals into a node will merely ‘confuse’ it. Since there
are only 69 source nodes in this network, nothing much can be said about the precise law
underlying the out-degree distribution. What can be said, however, is that there are few ‘hubs’
and a much larger fraction of ‘non-hubs’. The joint in–out degree distribution P(kin, kout) has
very small dependency (Spearman rank correlation coefficient: −0.0682, Pearson correlation:
−0.0108).

The shortest path-length distribution is a slightly right-skewed bell-shaped function with
average value of 3.437 (very small compared to the number of nodes: typical property of
a small world [11]) and the network diameter is 8. These features indicate the presence of
very few intermediate layers. There are 28613 pairs of nodes where a path exists only in
one direction (1.75% of all possible pairs) and 301 mutually linked pairs, indicating that each
node can reach only a tiny fraction of other nodes. This gives an immediate indication that
information is confined to sub-sets of the network. Studying the degree mixing (see section 4)
will shed more light on how information is confined.

The upstream cluster coefficient defined for a given node i is the number of triangles (Ntr)
the node forms with two input neighbours divided by the number of all possible such triangles:
C

ups
i = Ntr/kin(kin − 1) [7]. It measures how likely a node is part of an upstream clique. The

average upstream clustering coefficient is 0.117, showing that on average a node can have only
about 12% of the incoming neighbours that are adjacent. The upstream clustering coefficient
distribution fits quite well a decay behaviour Cups(kin) = 0.6326 k−0.73

in (R2 = 0.8294), that is a
typical signature of an underlying hierarchical structure [12, 13]. The downstream clustering
coefficient distribution roughly shows decay behaviour, though a good fit to a power law
cannot be obtained. The value of the average downstream clustering coefficient is 0.00386,
two orders of magnitude smaller than its upstream counterpart. The ratio of the two average
cluster coefficients indicates that it is much more likely to have a clique in the input rather
than in the output neighbourhood. Next, we compare these results to the mean properties of
the ensemble of networks with the same degree distribution by using the generating function
(GF) formalism [14]. Differences between the results from this analytic framework and
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the observations in the HPSN may indicate the action of evolutionary forces having shaped
the network for functional purposes. Given the joint distribution P(kin, kout), the generating
function is defined as

G(x, y) =
∑

kin,kout
P(kin, kout)x

kinykout .

The upstream and downstream clustering coefficients can be then derived as [7]

Ntr = 〈kin(kin − 1)〉
〈kin〉

〈kout(kout − 1)〉
〈kout〉

〈kinkout〉
〈kin〉 = ∂2G

∂x2

∂2G

∂y2

∂2G

∂x∂y

(
∂G

∂x

)−3
∣∣∣∣∣
x=y=1

Nin = 〈kin(kin − 1)〉 = ∂2G

∂x2

∣∣∣∣
x=y=1

; Nout = 〈kout(kout − 1)〉 = ∂2G

∂y2

∣∣∣∣
x=y=1

C
ups
i = Ntr/Nin; Cdns

i = Ntr/Nout.

The upstream clustering coefficient estimate (0.124) roughly agrees with that observed
(0.117), while the predicted value of downstream clustering coefficient (0.0019) shows a
relatively larger difference compared to that observed (0.00386). Finally, taking into account
the predicted relative size S of the giant component (see section 3), the GF formalism allows
us to compute the average shortest path [14]: l = log(Sn/z1)[log(z2/z1)]−1 + 1. The obtained
value is 3.081, a bit less than observed in HPSN (3.437).

3. HPSN components and comparison with analytical predictions
using generating function framework

3.1. Global component analysis

The global topology of many directed graphs, such as the WWW [15], metabolic networks
[16] and gene networks [8] resembles a ‘bow-tie’. As shown in figure 2, the HPSN topology
fits such a structure as well.

A strongly connected component (SCC) is defined as a maximal set of nodes in which
for each pair of nodes a and b there exists a directed path from a to b and vice versa. The
giant strongly connected component (GSCC) is the largest of the SCCs of the network. The
IN component nodes can reach the GSCC nodes through a directed path, but not vice versa.
The OUT component nodes can be reached from the GSCC but not vice versa. The TUBE
contains nodes connecting IN to OUT. All nodes that do not belong to previous components
are grouped in the TENDRIL. In the analysed HPSN the GSCC consists of 25 nodes (∼1.4%)
and 78 edges. There are nine nodes into the IN (∼0.5%), 1655 into the OUT (∼91%), two
into the TUBE and 119 into the TENDRIL. Comparing the relative sizes of the components
in the HPSN with other networks shows different results. For example, in the WWW [15]
the nodes are almost equally distributed over the components (GSCC ∼ 28%, IN ∼ 21% and
OUT ∼ 21%). In the English Wikipedia in June 2004, the IN and OUT components are of
about the same size (∼7%) with a much larger GSCC of ∼82% [18]. On the other hand,
several biological networks show the proportions observed in HPSN. For example, the E. coli
metabolic network features 15% for the IN and 30% for the OUT, with a GSCC of 40% [19].
A yeast gene network (YGN) [8] indeed is very similar to the HPSN in terms of the component
sizes: IN ∼ 2%, OUT ∼ 73% and GSCC ∼ 14%. This observation could be explained by the
fact that both the HPSN and YGN are regulatory networks where the number of regulators is
small compared to the number of targets.
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Figure 2. Bow-tie structure of HPSN. The picture was obtained by applying several layout
algorithms in Pajek [17]. The GSCC in the HPSN resembles a ‘brain’ in which the signals coming
from the IN component are processed and subsequently transmitted to the OUT component.

IN
nodes: 9
edges: 1

GSCC
nodes: 25
edges: 78

OUT
nodes: 1655
edges: 277

TND TND

TUBE

455

14 4129

107 472 70

Figure 3. Compact representation of the bow-tie structure of HPSN. Values along arrows indicate
how many edges join the components. Inside IN, OUT and GSCC boxes, number of nodes and
internal edges are reported. The three edges between TUBE and TENDRIL (TND) are omitted.

The bow-tie is a purely node-oriented classification. Focusing on edges, we discovered
the presence of IN nodes ‘talking’ directly to OUT nodes (thus without passing through GSCC
or TUBE). These shortcuts establish fast transmission of signals by circumventing complex
processing by the GSCC, confirming what has been found in the previous section about small
world feature. Figure 3 reports the number of edges inside and between each component: the
largest part of the information (counted as the number of edges) flows between IN and OUT
through the GSCC (14 and 4129 edges, respectively), whereas there are 455 shortcut edges
from IN to OUT.
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3.2. Topological characterization of GSCC

Since the GSCC is the most interesting component, we applied the previous topological
analysis (see section 2) specifically to it. The GSCC has an edge density of 0.13, two order
of magnitude higher than the whole HPSN (0.001 59). The in-degree distribution is still
roughly exponential with a coefficient α = 0.24 (R2 = 0.828), resulting in a fatter tail. With
respect to the HPSN, the average in and out degree increases to 3.12, the average path length
reduces to 2.93 and the diameter to 6. The upstream clustering coefficient is 0.234 and the
downstream clustering coefficient is 0.227. These values are closer to each other and both
higher than the HPSN counterparts, as expected since GSCC is denser. Both upstream and
downstream clustering coefficient distribution have decay behaviour roughly mimicking the
1/degree behaviour. By using the generating functions we predict the values of 0.149 and
0.119 for the average downstream and upstream clustering coefficient, respectively, which are
quite different from the observed values. Finally, the predicted average path length for GSCC
is 2.513.

A threshold for the GSCC appearance is identified by
∑

kin,kout
(2kinkout − kin −

kout)P (kin, kout) � 0. For the HPSN this sum is 9.434, showing that the giant component
transition already took place. This allows us to use the GF approach to predict the size
of the bow-tie components [14, 20]. We define the generating functions separately for the
in- and out-degree distribution of a node: F0(x) = G(x, 1),G0(y) = G(1, y). We also
need to define the distribution of degrees for a randomly chosen neighbour of a given node:
F1(x) = 〈kin〉−1∂G/∂y(x, 1),G1(y) = 〈kout〉−1∂G/∂x(1, y). Sizes of components can be
defined as follows: S + O = 1 – F0(u), S + I = 1 – G0(v), S = 1 – F0(u) – G0(v) + G(u,v),
where u and v are solutions of u = F1(u), v = G1(v) and I, O, S are the size of the IN, OUT
and SCC components, respectively. The predicted relative sizes are the following: SCC + IN
components 1.62% (observed 1.88%), GSCC + OUT 92.48% (observed 92.82%). As for the
relative size of the GSCC itself we found 1.26% against the observed value of 1.38%.

4. Correlation profiles analysis of the HPSN

Further insight in the topology of the HSPN can be obtained using degree correlation profiles
analysis. Correlation profiles have been introduced in [21, 22] to characterize high-level
topological properties of complex networks. Following this approach, the correlation in
degrees of adjacent nodes is compared between the real network and a properly randomized
counterpart that preserves some of its low-level topological properties. Implicitly, computation
of correlation between degrees of adjacent nodes of a directed network results in a classification
of its edges in terms of out- and in-degree of source and target nodes. In fact, we can
envisage four different classification schemes (figure 4), denoted as out–in, in–in, in–out,
out–out, depending if in- or out-degree is considered, respectively, of the upward node or
of the downward node of a given edge. Actually, we extended the approach proposed in
[21, 22] by considering further edge classification schemes in addition to the out–in used
by authors. The proposed four schemes, in turn, may be associated with specific functional
patterns.

Since we are interested in categorizing in- and out-degree in four classes, zero, low,
intermediate and high degree, we define small in- (out-) hubs, and large in- (out-) hubs,
depending if either 7 � kin < 14 (200 � kout < 400) or 14 � kin < 20 (400 � kout < 600). The
remaining nodes, characterized by either low nonzero in- or out-degree, that is 1 � kin < 7 and
1 � kout < 200, are defined as non-hubs. In-hubs can be seen as signal integrators; combining
many inputs to form a complex output to other nodes or to establish the output response.
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Figure 4. Classification schemes used in correlation profile analysis.

Figure 5. Z-score of node–degree-correlations. Connectivities were binned according to the
maximum in- or out-degree in four different classes, zero (Z), low (L), intermediate (I) and high
(H). (a) Z-score for out–in correlation profile. (b) Z-score for in–in correlation profile. (c) Z-score
for in–out correlation profile (d) Z-score for out–out correlation profile.

Out-hubs can be seen as signal distributors; a signal originating or coming through such nodes
reaches many other nodes. Comparison of the observed properties with an appropriate null
model may also reveal if some of these organizational patterns assume a particular relevance,
as a result of a significant deviation from chance. Following [21], the null model may be
obtained by randomly rewiring the edges of the HPSN, using a local rewiring algorithm based
on edge swapping. In this null model, all nodes conserve exactly the same in- and out-degree of
the original network, whereas the edges are randomly reshuffled, resulting in a randomization
of any correlation between degree values of connected nodes. This random counterpart is
used to identify those topological patterns which are significantly over- or under-represented
in the real network. Deviations from null model are evaluated in terms of Z-score, defined as
Z

(
ks
i , k

t
i

) = [
N

(
ks
i , k

t
i

) − 〈
Nr

(
ks
i , k

t
i

)〉][
�r

(
ks
i , k

t
i

)]−1
, where �r is the standard deviation of

Nr in 1000 realizations of the randomized network. N is the number of times that a directed
edge is observed in the real network between a node with source node degree ks

i and target
node degree kt

i (i = in, out); 〈Nr〉 is the average number of occurrences of such edges in the
randomized version of the network. Large positive (negative) values of Z-score indicate that
edges in the HPSN network are over- or under-represented compared to the null model.

Figure 5(a) displays the Z-score of node–degree correlations of the out–in classification
scheme, showing that in the present network high-degree source nodes (large out-hubs, i.e.
signal distributors) preferentially regulate intermediate degree target nodes (small in-hubs).
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If we define peers as those elements that belong to the same class of in- or out-degree
(e.g., low, intermediate or high), we may conclude that in the present case, information does
not flow significantly between peers. Finally, the information transfer is under represented
between non-hubs and small and large in-hubs. As a result, information flows preferentially
along a hierarchical path. This suggests the existence of relatively semi-independent modules
hierarchically organized, which is a feature already observed in many cellular processes, and
in molecular networks in particular [21, 23].

Figure 5(b) shows the Z-score of connectivity correlation of the in–in classification
scheme. Here, we investigate which is the flow of information between signal integrators
of different importance, and the information flow from zero in-degree nodes to small or large
in-hubs, i.e. signal integrators. Specifically, it is found that small in-hubs preferentially output
to non-hubs, and non-hubs preferentially output to small in-hubs. Signal integrators, therefore,
appear not to exchange information between signal integrators of the same importance.

Figure 5(c) shows the Z-score of connectivity correlation of the in–out classification
scheme. Here, we investigate which is the flow of information between signal integrators
and signal distributors and the information flow from signal integrators to zero in-degree
nodes. It is important to note that for the present classification scheme, we focus our attention
on target zero out-degree nodes, since it is found that more than 80% of network edges
are characterized by the property of having zero out-degree target nodes. Edge enrichment
is found for connection from low in-degree nodes to zero out-degree nodes, whereas edge
suppression is found for connections from intermediate in-degree nodes to zero out-degree
nodes. A preferential path of information processing from non-hubs to zero out-degree nodes
is observed. Information flow from small in-hubs to zero out-degree nodes is instead greatly
suppressed. Since connection of in-hubs to out-hubs appears not to be largely over-represented,
it may be conjectured that the topological structure of the present network does not favour
distribution of complex signals over the whole network.

Finally, figure 5(d) shows the Z-score of connectivity correlation of the out–out
classification scheme. Here, we investigate which is the flow of information between signal
distributors of different importance and the information flow from signal propagators to zero
out-degree nodes. Also in the present case, we focus our attention on source zero out-
degree nodes. Inspection of the figure shows that large and small out-hubs communicate
preferentially with zero out-degree out nodes, which are the end points of the signal flow.
Connections between non-hubs are over-represented, while from non-hubs to zero out-degree
nodes are under-represented. This indicates that the topology of the network does not favour
fast propagation of signals over the whole network, which would be the case if out-hubs would
output to other out-hubs. It also shows that most of the signals that are distributed over the
network are carried through low out-degree nodes.

5. Sub-graphs and stability

5.1. Sub-graph analysis

The objects of this section are 3- and 4-node sub-graphs. Sub-graphs occurring at a frequency
that is significantly different than expected by chance (usually called motifs) may be seen
as elementary building blocks of complex networks [24, 25]. For HPSN, sub-graphs were
identified by running the software FanMod [26]. By comparing the frequency of occurrence
of each sub-graph in the HPSN with respect to a set of randomized networks (1000 in the
present study) we identified several motifs.
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Table 1. Three- and four-node sub-graphs mentioned in the text, along with their Z-score.

A B C D E F G H I L M N O P
0.21 2.71 −5.96 1.34 −2.77 5.83 −1.04 −1.43 2.33 1.14 0.35 1.47 16.69 5.51

Table 1 displays the 3- and 4-node sub-graphs mentioned in this work, along with their
Z-score. The feed-forward loop (FFL, marked as E) that is often observed to be over-
represented in biological information processing networks, such as transcriptional regulatory
networks and neuronal networks [24], is actually under-represented in the HPSN (Z = −2.77).
However, sub-graph F is highly over-represented and can be seen as a superposition of two
FFLs. It seems that this information processing system required a slightly advanced form of
the simple FFL. This sub-graph has also been observed to be over-represented in other signal
transduction networks [24, 25]. Sub-graph F is composed by a pair of nodes with reciprocal
regulation, co-regulating the same node. It can then be interpreted as a backup or a concerted
co-regulation system. In the former case, one of the two source nodes can act as a backup for
the other source node when it fails, while in the latter the source pair is deciding together what
information pass and how to the target node. In common with food webs, cascade sub-graph B
is over-represented in the HPSN. The feed-back loop (sub-graph I) only occurs in six instances
in the network, but still is significantly over-represented in common with electronic circuits
(digital fractional multipliers) [24]. Among 4-node sub-graphs, the bi-fan (sub-graph O) in
which two nodes jointly input in two other nodes is strongly over-represented. Interestingly,
this indeed is in common with other biological information processing networks and electronic
circuits. Also, an advanced form of the bi-fan, sub-graph P, in which the two input nodes also
communicate with one another, is strongly over-represented, with similar interpretations as
for F.

5.2. Stability and sub-graphs

Analysis of dynamics provides information on the response of biological systems to external
perturbations. Systems that upon a perturbation exhibit a damped response pointing to the
initial steady state are classified as stable. A network can be represented by the Jacobian matrix
J, essentially a weight matrix, corresponding to a linear set of ordinary differential equations
(see, e.g., [25, 27]). The network is stable if all the eigenvalues of J have negative real
part. If in addition the corresponding imaginary parts are zero, stable solutions are monotonic
functions of time (no damped oscillations).

Stability of a network depends on its structure and on the weights of edges between
nodes. The goal of the study here is to quantify the effect of the network structure rather
than the weights. To average out the effect of the actual weights we study the stability over
a range of different weight values. We measure the probability for a given network to be
stable resulting from a set of trial configurations, for which entries of J are drawn from a
given distribution. We here specifically investigate the dynamic stability, but note that this
approach can be used to quantify probabilities for other dynamic properties as well, such as
the ratio of oscillatory versus non-oscillatory realizations. In addition, this approach allows
detecting certain types of bifurcations in the specified range of parameters [27]. Similarly to
the analysis performed by Prill et al [25], we check the relation between abundance of the 12
occurring 3-node sub-graphs in the network and their stability ratio. The latter is measured
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(a) (b)

Figure 6. (a) Whole network: sub-graph abundance (squares) compared with the stability ratio
(triangles). Sub-graphs are ordered according decreasing stability ratio. Elements of the Jacobian
matrix are drawn from a standard normal distribution. (b) The same test for the GSCC.

over a sampling of 1 million trials per sub-graph. Entries of the Jacobian matrix were drawn
from a standard normal distribution: this allows, in contrast, to the approach employed by
Prill et al, for positive value for the diagonal elements as well. A positive diagonal element
in the present case corresponds to autophosphorylation (kinases phosphorylating themselves,
which appears to happen quite frequently [28]). A negative diagonal value corresponds to the
decay of the phosphorylated state. As it was observed for many other networks [25], the most
commonly encountered sub-graphs are those with high stability ratio (see figure 6(a)).

Cyclic sub-graphs are generally less stable, because feedback loops with a potential
positive return effect will reduce the stability ratio. Moreover, sub-graphs with a small number
of edges are less likely to include cycles. As a consequence, the correlation between sub-
graph abundance and stability ratio is not surprising at all, because the most stable sub-graphs
are those with less edges and the HSPN is quite sparse. The same analysis applied to the
giant strongly connected component (GSCC) provides less intuitive results (see figure 6(b)).
The GSCC average degree approximately is similar to that of HPSN, but the cut-off in the
sub-graph distribution of GSCC is less dramatic. If stability ratio of sub-graphs affects to a
certain extent their distribution, as suggested by Prill et al [25], this effect is less evident for
the GSCC than for the whole network, though the general trend is the same. Still, it could be
argued that the component at the core of the network should not be shaped by evolution for
stability, but rather for more ‘exotic’ dynamics through which it transforms signals from IN
to OUT components.

6. Concluding remarks

In this work, we show that the analysis of directed networks can greatly improve the
understanding of the underlying phenomena with respect to simple undirected networks.
In fact, the loss of direction information relies on the silent assumption that undirected
edges establish communication in both directions. This is, of course, a wrong assumption,
since in PSNs a clear direction of signal flow is defined and can strengthen the analysis by
encompassing all the available information. Such a distinction is crucial as, for example,
‘hubs’ with mostly outgoing edges will be functionally completely different from hubs with
mostly incoming edges, or nodes with a high number of both (see section 4). Some topological
properties of HPSN have been characterized before [5] considering an undirected version of
the network. For instance, the joint degree distribution has been fit by a power law, while we
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show it is a mixture of a truncated-power-law in-degree and a roughly power-law out-degree
distribution. Linding et al [5] found a decreasing clustering coefficient distribution, which may
indicate a hierarchical topology [12]. We showed here that this behaviour still holds for both
upstream and downstream neighbourhoods. It should be pointed out that, as a consequence of
ignoring the edge direction in a network like this—largely dominated by target nodes (1790
targets versus 69 sources)—the findings are actually explained only by the target features.
Concerning the degree and clustering distributions, analysing the undirected version of the
HPSN is analogous to analysing the 1790 targets with some added ‘noise’ due to the sources.
We pointed out several growing network mechanisms that could give rise to the observed
in-degree distribution. As an alternative to such mechanisms, other authors proposed a purely
chemical-based model to explain the degree and clustering coefficient distributions in protein
interaction networks [29]. They then proposed their model as a suitable null model when
looking for evolutionary traces. However, it is not obvious to see how their results extrapolate
to the directed protein signalling network we have analysed here. Directed sub-graph analysis
and dynamical characterization of the HPSN show interesting features which are worthwhile
of further investigation. The distribution of 3-node sub-graph exhibits significant differences
with well-known biological networks (e.g. the feed-forward loop is under-represented), which
can be partly explained by the topological structure and biological meaning of the HPSN.
The stability of the HPSN is driven by the GSCC since nodes belonging to the IN and OUT
components contribute only trivially to the spectrum of the Jacobian matrix. The fact that
the GSCC has small size, offers the rare opportunity to study the dynamical behaviour of this
entire large biological network by the statistical approach outlined in section 5. A detailed
investigation on dynamical properties of GSCC is the subject of ongoing research.

The HPSN is a part of a much larger regulatory network, including gene expression—a
process that occurs at a slower timescale with respect to protein interaction. The analysis on
the HPSN by itself, outside the context of the global human regulatory system, will provide
insights into the organization of information processing in cells at least at the fast timescale.
For a complete understanding of information processing by human cells the HPSN should
be merged with a human transcription regulatory network. However, while parts of the
latter network are known [30–32], the genome-wide structure is still in the process of being
elucidated. In addition, the HPSN should be extended to include other types of chemical
protein modifications, but these are still not known on a proteome-wide scale either.
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